资源类型

期刊论文 104

年份

2023 10

2022 7

2021 7

2020 7

2019 16

2018 6

2017 3

2016 2

2015 3

2014 7

2013 5

2012 1

2011 5

2010 5

2009 3

2008 3

2007 5

2005 2

2004 2

2002 1

展开 ︾

关键词

化肥 2

2

磷肥 2

Tetrasphaera 1

TRIP钢 1

不可再生 1

不可还原性 1

二氧化硫 1

低硅 1

催熟剂 1

农业微生物;产业发展;微生物肥料;饲用微生物;微生物农药;酶制剂微生物;微生物种业 1

农业生态工程 1

农用硝酸铵 1

农药 1

加速度量热仪 1

化肥;节水;利用率;滴灌;PVC 1

北方旱区 1

印染废水 1

厌氧发酵 1

展开 ︾

检索范围:

排序: 展示方式:

Phosphorus supply and management in vegetable production systems in China

Rui WANG, Weiming SHI, Yilin LI

《农业科学与工程前沿(英文)》 2019年 第6卷 第4期   页码 348-356 doi: 10.15302/J-FASE-2019277

摘要:

Vegetable production systems involve high rates of chemical and organic fertilizer applications, leading to significant P accumulation in vegetable soils, as well as a decrease in P use efficiency (PUE), which is one of the key limiting factors in vegetable production. This review introduces the vegetable production systems in China and their fertilization status, and analyzes probable causes of overfertilization of vegetable fields. Poorly developed root systems and high P demand have led to the need to maintain much higher available P concentrations in the root zone for regular growth of vegetables, which might necessitate higher phosphate fertilizer input than the plants require. Research on strategies to improve vegetable PUE and the mechanisms of these strategies are summarized in this review. Increasing the P uptake by vegetables by supplying P during the critical growth stage and effectively utilizing the accumulated P by optimizing the C:P ratio in soils can substantially increase PUE. These advances will provide a basis for improving PUE and optimizing phosphate fertilizer applications in vegetable production through regulatory measures. In addition, some policies are recommended that could ensure the safety of vegetables and improve product quality. This review also aims to improve understanding of P cycling in vegetable fields and assist in the development of best practices to manage P reserves globally.

关键词: phosphate fertilizer     phosphorus use efficiency     vegetable production systems     phosphorus management     policy recommendation    

Phosphorus use efficiency and fertilizers: future opportunities for improvements

null

《农业科学与工程前沿(英文)》 2019年 第6卷 第4期   页码 332-340 doi: 10.15302/J-FASE-2019274

摘要:

The continued supply of phosphate fertilizers that underpin global food production is an imminent crisis. The rock phosphate deposits on which the world depends are not only finite, but some are contaminated, and many are located in geopolitically unstable areas, meaning that fundamental changes will have to take place in order to maintain food production for a growing global population. No single solution exists, but a combination of approaches to phosphorus management is required not only to extend the lifespan of the remaining non-renewable rock phosphate reserves, but to result in a more efficient, sustainable phosphorus cycle. Solutions include improving the efficiency of fertilizer applications to agricultural land, alongside a better understanding of phosphorus cycling in soil-plant systems, and the interactions between soil physics, chemistry and biology, coupled with plant traits. Opportunities exist for the development of plants that can access different forms of soil phosphorus (e.g., organic phosphorus) and that use internal phosphorus more efficiently. The development of different sources of phosphorus fertilizers are inevitably required given the finite nature of the rock phosphate supplies. Clear opportunities exist, and it is now important that a concerted effort to make advances in phosphorus use efficiency is prioritized.

关键词: organic phosphorus     phosphorus fertilizer     phosphorus use efficiency     rock phosphate    

Strategies for improving fertilizer phosphorus use efficiency in Chinese cropping systems

Gu FENG, Jingping GAI, Xionghan FENG, Haigang LI, Lin ZHANG, Keke YI, Jialong LV, Yiyong ZHU, Li TANG, Yilin LI

《农业科学与工程前沿(英文)》 2019年 第6卷 第4期   页码 341-347 doi: 10.15302/J-FASE-2019280

摘要:

A four-year project, entitled “The mechanisms of fraction transformation and high use efficiency of P fertilizer in Chinese cropping systems” commenced in 2017. The project was established to answer three key questions and looked at 17 cropping systems on ten soils. First, we asked what are the dynamics of transformation, fixation and mobilization of P fertilizers in soil-cropping systems? Second, what are the mechanisms of soil-crop-microbe interactions by which P fertilizer can be efficiently used? Third, how to manipulate the processes of P use in cropping systems? The targets of this project are (1) to explore the mechanisms of P fixation, the pathways of loss of P availability and the threshold of migration of fertilizer P in the field; (2) to uncover mechanisms by which soil legacy P is mobilized through root physiological and morphological processes and through arbuscular mycorrhizal fungi and P-solubilizing bacteria in rhizosphere and hyphosphere; (3) to estimate the biological potential of crops for high efficiency P absorption and use; (4) to innovate new approaches for improving the efficiency of P fertilizers. The outcomes will provide theoretical support for setting standards for limitation of P fertilizer application rate in the main cropping zones of China.

关键词: fixation     mobilization     phosphorus fertilizer     rhizosphere     transformations     utilization    

substances from the dewatering effluent of thermally treated sludge and its performance as an organic fertilizer

Yuning YANG,Huan LI

《环境科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 578-584 doi: 10.1007/s11783-015-0827-5

摘要: The biologic treatment of the dewatering effluent from thermally treated sludge is difficult due to the high concentration of refractory humic substances. On the other hand, humic substances are an important source of organic fertilizer. In this study, a novel process using ferric coagulant was developed to recover humic substances from dewatering effluent for use as an organic fertilizer. When ferric coagulant was applied to raw dewatering effluent, up to 70% of humic substances were enmeshed by hydrolyzed ferric ions at an optimum pH of 4.5. The proper mass ratio of iron ions to humic substances was 0.6. In the recovered material, humic substances accounted for 24.2% of the total dry solids, and the amount of phosphorus (equivalent phosphorus pentoxide) was 6.2%. Heavy metals and other components all met the legal requirements for organic fertilizer. When the recovered material was applied to soybeans, the germination and growth of the seeds was significantly improved.

关键词: sewage sludge     humic substances     recovery     phosphorus     fertilizer    

Correction to: Highly degradable chitosan-montmorillonite (MMT) nanocomposite hydrogel for controlled fertilizer

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1704-2

nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer

Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1249-6

摘要: Abstract • Nanocomposites were prepared by adding dolomite to vinasse at different ratio. • Textural and morphological features of adsorbents were studied in detail. • CCD based RSM was used for investigation of P ion removal by nanocomposite. • The qm based on Langmuir model for modified vinasse biochar was 178.57 mg/g. • P loaded nanocomposite improved plant growth and could be utilized as P-fertilizer. The effectiveness of phosphate (P) removal from aqueous solutions was investigated by novel low-cost biochars synthesized from vinasse and functionalized with calcined dolomite. The vinasse-derived biochar, synthesized via pyrolysis at different temperatures, showed easy preparation and a large surface area. The novel vinasse biochar nanocomposites were prepared by adding dolomite to the vinasse biochars with different weight percentages (10, 20 and 30%). The characteristics of the prepared materials were identified for further understanding of the inherent adsorption mechanism between P ions and vinasse biochars. Vinasse-dolomite nanocomposite was very effective in the adsorption of P species from aqueous media. The effect of the operational factors on Vinasse-dolomite nanocomposite was explored by applying response surface methodology (RSM). According to RSM results, the optimum condition was achieved to be contact time 90 (min), 250 (mg/L) of P concentration and pH 7. Thermodynamic isotherm and kinetic studies were applied on experimental data to understand the adsorption behavior. The Vinasse-dolomite nanocomposite revealed preferential P species adsorption in the presence of co-existing anions. The P species could be recovered by 1.0 M HCl where the efficiency was not affected up to the fifth cycle. The P-loaded Vinasse-dolomite nanocomposite was successfully tested on a plant; it significantly improved its growth and proved its potency as a P-based fertilizer substitute.

关键词: Biochar     Vinasse     Dolomite     Phosphate     Fertilizer    

PROPOSED INNOVATION REFORM MODEL FOR THE MINERAL NITROGEN FERTILIZER INDUSTRY IN CHINA TO REDUCE GREENHOUSE

《农业科学与工程前沿(英文)》 2023年 第10卷 第2期   页码 234-247 doi: 10.15302/J-FASE-2022468

摘要:

● The carbon footprint of the nitrogen fertilizer chain has decreased significantly over the last decade.

关键词: carbon accounting     life cycle assessment     policy     product structure    

Comparison of analytical procedures for measuring phosphorus content of animal manures in China

null

《农业科学与工程前沿(英文)》 2019年 第6卷 第4期   页码 431-440 doi: 10.15302/J-FASE-2019279

摘要:

The concentration and components of manure phosphorus (P) are key factors determining potential P bioavailability and runoff. The distribution of P forms in swine, poultry and cattle manures collected from intensive and extensive production systems in several areas of China was investigated with sequential fractionation and a simplified two-step (NaHCO -NaOH/EDTA) procedures. The mean total P concentration, determined by the sequential fractionation procedure of intensive swine, poultry and cattle manure, expressed as g·kg , was 14.9, 13.4 and 5.8 g·kg , respectively, and 4.4 g·kg in extensive cattle manure. In intensive swine, poultry and cattle manure about 73%, 74% and 79% of total P, respectively, was bioavailable (i.e., P extracted by H O and NaHCO ) and 78% in extensive cattle manure. The results indicated the relative environmental risk, from high to low, of swine, poultry and cattle manure. There is considerable regional variation in animal manure P across China, which needs to be considered when developing manure management strategies.

关键词: diet phosphorus     manure phosphorus     sequential P fractionation    

Advanced nitrogen and phosphorus removal in A

Jianhua WANG, Yongzhen PENG, Yongzhi CHEN

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 474-480 doi: 10.1007/s11783-011-0360-0

摘要: A laboratory-scale anaerobic-anoxic-aerobic process (A O) with a small aerobic zone and a bigger anoxic zone and biologic aerated filter (A O-BAF) system was operated to treat low carbon-to-nitrogen ratio domestic wastewater. The A O process was employed mainly for organic matter and phosphorus removal, and for denitrification. The BAF was only used for nitrification which coupled with a settling tank Compared with a conventional A O process, the suspended activated sludge in this A O-BAF process contained small quantities of nitrifier, but nitrification overwhelmingly conducted in BAF. So the system successfully avoided the contradiction in sludge retention time (SRT) between nitrifying bacteria and phosphorus accumulating organisms (PAOs). Denitrifying phosphorus accumulating organisms (DPAOs) played an important role in removing up to 91% of phosphorus along with nitrogen, which indicated that the suspended activated sludge process presented a good denitrifying phosphorus removal performance. The average removal efficiency of chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and were 85.56%, 92.07%, 81.24% and 98.7% respectively. The effluent quality consistently satisfied the national first level A effluent discharge standard of China. The average sludge volume index (SVI) was 85.4 mL·g additionally, the volume ratio of anaerobic, anoxic and aerobic zone in A O process was also investigated, and the results demonstrated that the optimum value was 1∶6∶2.

关键词: Anoxic zone and biologic aerated filter (A2O-BAF) system     domestic wastewater with low carbon-to-nitrogen ratio     advanced nitrogen and phosphorus removal     denitrifying phosphorus removal    

Comments on “Innovations for phosphorus sustainability: implications for the whole food chain” in specialissue of “Sustainable Phosphorus Use in Agri-Food System”

Peter M. VITOUSEK, Xuejun LIU

《农业科学与工程前沿(英文)》 2019年 第6卷 第4期   页码 441-442 doi: 10.15302/J-FASE-2019284

Kinetic analysis of anaerobic phosphorus release during biological phosphorus removal process

DOU Junfeng, LIU Xiang, LUO Guyuan

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 233-239 doi: 10.1007/s11783-007-0040-2

摘要: Enhanced biological phosphorus removal (EBPR) is a commonly used and sustainable method for phosphorus removal from wastewater. Poly-β-hydroxybutyrate (PHB), polyphosphate, and glycogen are three kinds of intracellular storage polymers in phosphorus accumulation organisms. The variation of these polymers under different conditions has an apparent influence on anaerobic phosphorus release, which is very important for controlling the performance of EBPR. To obtain the mechanism and kinetic character of anaerobic phosphorus release, a series of batch experiments were performed using the excessively aerated sludge from the aerobic unit of the biological phosphorus removal system in this study. The results showed that the volatile suspended solid (VSS) had an increasing trend, while the mixed liquid suspended sludge (MLSS) and ashes were reduced during the anaerobic phosphorus release process. The interruption of anaerobic HAc-uptake and phosphorus-release occurs when the glycogen in the phosphorus-accumulating-organisms is exhausted. Under the condition of lower initial HAc-COD, HAc became the limiting factor after some time for anaerobic HAc uptake. Under the condition of higher initial HAc-COD, HAc uptake was stopped because of the depletion of glycogen in the microorganisms. The mean ratio of ΔρP/Δρ, Δρ/ΔρPHB, ΔρP/ΔCOD, and ΔρPHB/ΔCOD was 0.48, 0.50, 0.44, and 0.92, respectively, which was nearly the same as the theoretical value. The calibrated kinetic parameters of the HAc-uptake and phosphorus-release model were evaluated as follows: Q was 164 mg/(g °h), Q was 69.9 mg/(g °h), K was 0.005, and KCOD was 3 mg/L. An apparently linear correlation was observed between the ratio of ΔρP/ΔCOD and pH of the solution, and the equation between them was obtained in this study.

关键词: interruption     process     ΔρP/Δρ     Enhanced biological     Poly-β-hydroxybutyrate    

Effects of phosphorus concentration on Cr(VI) sorption onto phosphorus-rich sludge biochar

DING Wenchuan,PENG Wenlong,ZENG Xiaolan,TIAN Xiumei

《环境科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 379-385 doi: 10.1007/s11783-013-0606-0

摘要: To investigate effects of phosphorus content on Cr(VI) sorption onto phosphorus-rich biochar, sewage sludge of different phosphorus concentrations from 4 to 60 mg·g by dry weight were prepared and carbonized to make biochar for batch sorption experiments. Test results revealed that different phosphorous concentration of raw sludge had respective impacts on surface area, pore surface area, average pore diameter and pH value of derived biochar. The adsorption kinetics of phosphorus-rich biochar could be described by the pseudo-second-order model. The sorption isotherm data followed Langmiur model better than Freundlich model. Biochar produced from sludge with phosphorus concentration of 20 mg·g gave the largest chromium sorption capacity, which could be attributed to its largest surface area and pores surface area comparing with those of biochars from sludge with other phosphorus concentrations. The chromium loaded biochar was analyzed using Fourier Transform Infrared Spectroscopy and X-ray Diffraction measurement. The results indicated that chemical functional groups hydroxyl and methyl on surface of biochar were involved in Cr(VI) binding and its reducing to Cr(III). Then, a portion of Cr(III) in form of various phosphate precipitates was bound onto biochar surface and the rest was released into the solution. The experimental results suggested that phosphorus played an important role in pore and surface area development of sludge biochar during pyrolytic process. It also could react with Cr(III) on the biochar surface that impacted on capacity of Cr(VI) removal from solution by sludge biochar. Therefore, phosphorus concentration in sludge should be considered when sludge pyrolytic residue would be reused for heavy metals sorbing.

关键词: phosphorus     biochar     sewage sludge     hexavalent chromium     adsorption    

Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process

Hongxun HOU, Shuying WANG, Yongzhen PENG, Zhiguo YUAN, Fangfang YIN, Wang GAN

《环境科学与工程前沿(英文)》 2009年 第3卷 第1期   页码 106-111 doi: 10.1007/s11783-009-0005-8

摘要: The anaerobic-anoxic oxidation ditch (A /O OD) process is popularly used to eliminate nutrients from domestic wastewater. In order to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal, and enhance the denitrifying phosphorus removal in the A /O OD process, a pilot-scale A /O OD plant (375 L) was conducted. At the same time batch tests using sequence batch reactors (12 L and 4 L) were operated to reveal the significance of anoxic phosphorus removal. The results indicated that: The average removal efficiency of COD, , , and TN were 88.2%, 92.6%, 87.8%, and 73.1%, respectively, when the steady state of the pilot-scale A /O OD plant was reached during 31-73 d, demonstrating a good denitrifying phosphorus removal performance. Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms could be used as electron receptors in denitrifying phosphorus removal, and the phosphorus uptake rate with as the electron receptor was higher than that with when the initial concentration of either or was 40 mg/L.

关键词: wastewater treatment     anaerobic-anoxic (A2/O)     oxidation ditch (OD)     biological phosphorus removal     denitrifying phosphorus removal    

nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1387-5

绿色化的磷复肥生产集成工艺

冯怡生

《中国工程科学》 1999年 第1卷 第1期   页码 58-62

摘要:

磷复肥生产排放的磷石膏废渣堆存占地,污染环境,已成为亟待解决的难题。利用磷石膏制硫酸与水泥,可消除污染,实现硫资源的良性循环,使经济效益、社会效益和环境效益有机统一,促进了磷复肥工业的可持续发展。

关键词: 磷复肥     磷石膏     硫酸     水泥    

标题 作者 时间 类型 操作

Phosphorus supply and management in vegetable production systems in China

Rui WANG, Weiming SHI, Yilin LI

期刊论文

Phosphorus use efficiency and fertilizers: future opportunities for improvements

null

期刊论文

Strategies for improving fertilizer phosphorus use efficiency in Chinese cropping systems

Gu FENG, Jingping GAI, Xionghan FENG, Haigang LI, Lin ZHANG, Keke YI, Jialong LV, Yiyong ZHU, Li TANG, Yilin LI

期刊论文

substances from the dewatering effluent of thermally treated sludge and its performance as an organic fertilizer

Yuning YANG,Huan LI

期刊论文

Correction to: Highly degradable chitosan-montmorillonite (MMT) nanocomposite hydrogel for controlled fertilizer

期刊论文

nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer

Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed

期刊论文

PROPOSED INNOVATION REFORM MODEL FOR THE MINERAL NITROGEN FERTILIZER INDUSTRY IN CHINA TO REDUCE GREENHOUSE

期刊论文

Comparison of analytical procedures for measuring phosphorus content of animal manures in China

null

期刊论文

Advanced nitrogen and phosphorus removal in A

Jianhua WANG, Yongzhen PENG, Yongzhi CHEN

期刊论文

Comments on “Innovations for phosphorus sustainability: implications for the whole food chain” in specialissue of “Sustainable Phosphorus Use in Agri-Food System”

Peter M. VITOUSEK, Xuejun LIU

期刊论文

Kinetic analysis of anaerobic phosphorus release during biological phosphorus removal process

DOU Junfeng, LIU Xiang, LUO Guyuan

期刊论文

Effects of phosphorus concentration on Cr(VI) sorption onto phosphorus-rich sludge biochar

DING Wenchuan,PENG Wenlong,ZENG Xiaolan,TIAN Xiumei

期刊论文

Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process

Hongxun HOU, Shuying WANG, Yongzhen PENG, Zhiguo YUAN, Fangfang YIN, Wang GAN

期刊论文

nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer

期刊论文

绿色化的磷复肥生产集成工艺

冯怡生

期刊论文